TECHNODOLLY CGI data export

The TECHNODOLLY crane is ideally suited to provide a precise and easy
to use data export for virtual sets. No calibration is required because all
axes are equiped with absolute encoders instead of incremental encoders.
Furthermore, the TECHNODOLLY performs all calculation steps to get real
cartesian coordinates from the axis positions. Its not necessary for the user
to care about the geometry of the crane or about the excentricity of the head.
The positional values sent are the true cartesian coordinates of a reference
point on the optical axis of the camera .

If a fixed focal length lens is used, this reference point can be choosen on the
nodal plane of the camera and, consequently, the values are equivalent to the
ones of the virtual camera. In case that zoom lenses are used (where typically
the shift of the nodal plane with changing focal length must be considered),
this effect has to be taken into account in the CGI software.

This document describes the details of the implementation of the TECHN-
ODOLLY data export to enable people to read the camera positions from a
CGI software.

Definitions of terms

BP Boom Pan. Horizontal swing axis of crane.
BT Boom Tilt. Vertical swing axis of crane.

LH Levelling head.

The graphical user interface (GUI)

A graphical user interface (GUI) allows the user to choose the data export
format and to enter some mechanical specs which vary with different head
configurations. Consequently, the user interface looks slightly different when
using a two-axes or a three-axes head (see Fig. 1). See Fig. 5 for an expla-
nation of the mechanical specs.

The user can choose between binary, ASCII (text) and kuper compatible
(similiar to ASCII but with an uncommon end-of-line delimiter) formats.
For each format, you can choose between polar and cartesian coordinates.

Definition of coordinates

Fig. 2 and 3 and Fig. 4 show the TECHNODOLLY coordinate system. The
x-axis is parallel to the tracks, y is the horizontal coordinate perpendicular
to the tracks and z is the height above floor.

Ipure axis data output (“polar”) is also avilable

Data export settings [2-axes head

 Mechanical
Height of BP motor base plate above floor in mm (L1) 180
Vertical distance between LH axis and tilt axis in mm (L2) 516
Camera's lengthwise displacement relative to pan/tilt axis in mm (L3) 178
(positive values indicate that the reference plane is moved towards field of view)
(postive vatues mlate a cspiacement towards ik moter) 12
Camera's vertical displacement relative to tilt axis in mm (L5) Im—

(positive values indicate an upwards shift)
¢ Tilt motor on left side of camera

& Tilt motor on right side of camera

Optional fine offsets
Pan [degrees] 0
4
Tilt [degrees] 0
-t
 Coordinates Format for real-time export Format for file export —
& cartesian & binary ¢ binary
¢ polar ¢« ASCII & ASCII
¢ Cooper compatible ¢ Cooper compatible
 Real-time export only
status no genlock / shutter pulse

data rate without genlock / shutter pulse [Hz]

=
o
=1

delay between genlock / shutter pulse and start of transmission [ms] 1.5

Data export settings [3 axes head

Mechanical
Height of BP motor base plate above floor in mm (L1) 180
Vertical distance between LH axis and tilt axis in mm (L2) 516
Horizontal distance between roll-axis and pan-axis [mm] 132

(positive numbers indicate a shift of roll-axis towards tilt motor)

Camera's lengthwise displacement relative to pan/tilt axis in mm (L3)

(positive values indicate that the reference plane is moved towards field of view)
Camera's sidewise displacement relative to pan axis in mm (L4) 13
(positive values indicate a displacement towards tilt motor)

Camera's vertical displacement relative to tilt axis in mm (L5) 0
(positive values indicate an upwards shift)

18711

Optional fine offsets
Pan [degrees] 0
_t
Tilt [degrees] 0
_t
Roll [degrees] 0
il
r Coordinates Format for real-time export Format for file export —
& cartesian # binary binary
¢ polar © ASCII & ASCII
~ Cooper compatible ~ Cooper compatible
r Real-time export only
status no genlock / shutter pulse

data rate without genlock / shutter pulse [Hz] 5

T

delay between genlock / shutter pulse and start of transmission [ms]

Figure 1: The user interface for a two-axes head (top) and for a three-axes head (bot-
tom). For the meanings of the numbers in the “mechanical” section see Fig. 5. The
settings in the “real-time data export only” section have no effect when writing CGl data
to a file. See section genlock / shutter pulse for details.

Figure 2: The TECHNODOLLY’s coordinate system (top view).

D

:; i ¥ .vﬁ
T I

X
Figure 3: The TECHNODOLLY's coordinate system (side view)

s
AP, 8417@:8@_” o AN (53N

Figure 4: Zero position of track axis. When track is at the position shown,
the origin of TECHNODOLLY's coordinate system is in the center of boom
pan rotation and a floor height.

|\
[_N‘V'A' ig\he

ER)

-/ N

L2

-L5

-

Figure 5: The definition of the four lengths L2 ... L5 which describe the
displacements of the camera relative to centers of rotation. The top shows
a side view, the bottom shows a top view. For definition of L1, see Fig. 3.

The origin of the cartesian space is at the intersection of boom pan axis
and floor when track is at zero. Fig. 4 shows how track zero is defined for
wire-drive track.?

For definition of pan, tilt and roll see Fig. 2 and 3. A positive pan angle
means a clockwise rotation (top view). A positive tilt angle means swinging
up the camera towards sky. Roll is the rotation around optical axis. A
positive roll angle means turning the camera clockwise (viewing towards field
of view). As can be seen, tilt and roll directly correspond to the respective
motor angle while pan is also affected by BP angle.

Remarks for Maya users

For maya in y-up configuration we get the following rules:

Technodolly-x corresponds to Maya-x, Technodolly-y corresponds to nega-
tive Maya-z, Technodolly-z corresponds to Maya-y. Consequently, pan is
a rotation around Maya-y, tilt is a rotation around Maya-z and roll is a
rotation around Maya-x. The order of rotations is yzz. Remind that all
the transformations above will be automatically done if you are using our
Maya-plugin to read the TECHNODOLLY’s CGI data.

Units

All lengths are given in meters. All angles are given in degrees. When using
uncalibrated lenses (which is the only option at the moment), zoom, focus
and iris data is in percent (i.e. 0 at one mechanical stop and 100 at the
other).

Type of link

At the moment, the data output uses a serial port. RS232 outputs are
provided (for shorter cable lengths) as well as RS422 outputs (for longer
cables).The bit rate is 115200 bits per second (BAUD), one start bit and one
stop bit, no parity. The endianess is little endian, that means for a multi-byte
quantity, the lowest significant byte is transferred first.

Later on , we will also support ethernet transmision (UDP protocol)

Genlock / shutter pulse

Let’s first summarize the folowing section: You need genlock or shutter pulse

2 A remark for cranes with cograil type track (as opposed to wire-drive type):
Obviously, the z-coordinate is affected by the position on the track. Because the track
motor can be locked to the cograil at any position, you can have quite large offsets for the
z-coordinate. To get a well-defined origin along z-axis run the move called “zero.move”
before locking the track motor to the cograil.

e if you repeat the same move and you are planing to combine diffrent
shoots in postprocessing or

e if you are using real-time data export.

Now, the details:

Genlock /shutter pulse and repeatability

In many situations, the TECHNODOLLY is used to repeat the same move
several times. Later on in post-processing, the recorded shoots (video or
film) are overlayed. In this situation the TECHNODOLLY’s bloop-plate is
used. The bloop plate produces a short flash when starting the move and
allows to identify the first frame.

lamgine that we shoot PAL video (25 frames per second) and that the crane
is moving with a moderate speed of 1 m/s. If we do not synchronize the
start of the TECHNODOLLY move with the image formation on the CCD
chip somehow, we have to expect a time lapse up to 1/25 seconds between
corresponding frames. This leads to an positional error up to 4 ¢m, which
can be well visible. Remind that this error is arbitrary, two shoots may be
in perfect coincidence by good luck or may show a large error.

The solution to this problem is to provide a genlock or shutter pulse signal.
With a genlock or shutter pulse signal present, the TECHNODOLLY will not
instantly start the move when the red button at the bloop plate is pressed.
Instead, it waits for the next genlock or shutter pulse before actually starting
the move 2. This little delay (for example, 0.04 seconds maximum for PAL
genlock) will eliminate the described positional error.

Genlock /shutter pulse and data export

Even if not overlaying different shoots there is another reason to use genlock
or shutter pulse: Not only the move is synchronized to the genlock or shutter
pulse but also the real-time data export.

To understand the problem imagine the following situation: You shoot PAL
video in a greenscreen studio at nominally 25 fps. TECHNODOLLY’s real-
time data export is connected to a rendering computer which runs e.g. VizZRT
software. For each new frame to render, this system uses the most recent
camera positional data available.

You set the TECHNODOLLY data rate to 25 fps but due to variations in
either the TECHNODOLLY’s timebase or the camera’s timebase the data
rate is slightly lower then the frame rate. As a consequence, at certain
frames it happens that two frames rendered by the VizRT system use the
same positional data from TECHNODOLLY: For the previous frame, a new

3With genlock, the crane acually waits for the next pulse which belongs to an odd field
(remind that the supported video formats are intelaced).

data packet had arrived just in time. For the actual frame, the next data
packet was not yet available because the data rate is slightly slower then the
frame rate. The result are visible jerks in the rendered images which are not
acceptable for broadcasting.

Again, the solution is to provide a genlock or shutter pulse signal to the
TECHNDOLLY.

Delay between genlock / shutter pulse and start of data

The previous thoughts also explain the meaning of “delay between genlock
/ shutter pulse and start of data” in the data export window (see Fig. 1).
With bad luck, it may happen —even with genlocking— that data packets
are transmitted at unappropriate instants of time. That means that the
completion of the packets is very close to the moment when the rendering
software scans for new data. Then, the system may use the just arrived data
or the previous one, depending on unavoidable variations in data processing
time.

The solution to this problem is to slight shift data transmission relative to
genlock. As a rule of thumb, if you observe arbitrary jerks even with genlock,
you should add one quarter frame periode (10 ms for PAL) to the value. Then
the jerks will disappear.

Technical aspects of genlock

The genlock input is a BNC socket at rear side of the desk. It works with
composite video signals which are PAL, NTSC or SECAM *. You can either
feed in a a composite video signal (for example in situations where you have
just one video camera) or a so-called genlock signal. This type of signal is
normally used in studio setups: The genlock generator (“the master”) hands
out a common signal for many cameras and other studio equipment. This
signal is actually nothing else then a composite video signal without picture
information embedded.

At the time of writing (May 2009), HD tri-level sync is not supported. If a
composite genlock signal is not available in your setup, you may have to use
a down-converter box for that purpose.

Technical aspects of shutter pulse

The shutter pulse input is a 7 pin XLR socket at rear side of the desk (pin
1 is signal, pin 2 is camera ground). Unfortunately, there is no standard for
shutter pulse signals across camera manufactureres. However, most cameras
produce shutter pulses compatible to TTL (transistor-transistor-logic) levels.

4National semiconductor’s LM1881 chip is used for the purpose of extracting vertical
sync information from composite signals. For very detailed questions about TECHN-
ODOLLY’s genlock input, you may inspect the LM1881 datasheet at www.national.com.

Please ask the camera manufacturer when in doubt. TECHNODOLLY’s
shutter pulse input is TTL compatible and, additionally, is optically insulated
from ground to avoid problems from different ground levels .

When using shutter pulse input, make sure that the camera is running and
has reached full speed when starting the TECHNODOLLY move.

Data rate

The data rate is either determined by the Gen-Lock signal or —if no Gen-
Lock is present— set by the user in the GUI. The maximum data rate (binary
& cartesian) is 180Hz.

The ASCII & cartesian data stream

This is the most recommended format to import a TECHNODOLLY CGI
data file into external programs. It is a simple, comma-separated format.
Such a file would look like

R0.00,-1.2666,0.9436,0.8534,-35.011,-179.043,0.000,100.000,100.000,100.000
R1.00,-1.2666,0.9436,0.8534,-35.011,-179.043,0.000,100.000,100.000,100.000
R2.00,-1.2666,0.9436,0.8534,-35.011,-179.043,0.000,100.000,100.000,100.000

Each packet starts with a capital letter which is 'R’ if the crane is running
a pre-programmed move and which is 'S’ otherwise. Each packet ends with
a line feed (Oxa, "\n’) °. In between, there are a couple of comma-separated
numbers. These numbers are frame number, X, Y, Z, pan, tilt, roll, zoom,
focus, iris (in that order). See also sections “Definitions of coordinates” and
“Units” for details.

For programmers: The data can be generated with a c-statement similiar to

printf("%c%d.00,%.4f,%.4f,%.4f,%.3F,%.4£,%.4F,%.4£,%.4£,% .4 %c",
startLetter, frameNumber,
X, Y, Z,
pan, tilt, roll,
zoom, focus, iris, ’\n’);

The binary & cartesian data stream

Each packet has a length of 64 bytes. It starts wit a constant start indi-
cator (0x7f7abaab) which is choosen to never represent a real floating point
number. The floats are IEEE 32-bit floating point numbers. u8 means an
8-bit unsigned integer (typically eqivalent to unsigned char on most systems),

In kuper compatible mode, each packet is ended by the combination of a carriage
return (Oxd, , "\r’) and a zero-character (0x0, "\0’)

u32 is a unsigned 32-bit integer (typically eqivalent to unsigned int on most
systems) et cetera. See the tabel below and the c-code samples.

Zoom, focus and iris “units”are percent, i.e. one mechanical stop is 0.0, the
other one is 100.0.

The table below shows the contents of a data packet. The endianess is little
endian, that means for a multi-byte quantity, the lowest significant byte is
transferred first. For example, the sync patter will be transferred in the order
Oxab, Oxba, 0x7a and Ox7f.

meaning data type data length | units
(bytes)

sync pattern u32 4 -

(0xT7f7abaab)

packet number | u32 4 -

frame number | u32 4 -

time float 4 S

X float 4 m

y float 4 m

zZ float 4 m

pan float 4 degrees

tilt float 4 degrees

roll float 4 degrees

zoom float 4 %

focus float 4 %

iris float 4 %

Spare area struct spareArea | 8 -

checksum u32 4 -

The following c-declarations shows the definition of c-structures which rep-
resent a binary packet:

/*

* This is the definition of the 64-bit bitfield used in the two structures
* CGIDataCartesian and CGIDataPolar. At the moment, it holds just two bits:
* "running" indicates that TECHNODOLLY is running a pre-programmed move.

* "cameraOn" indicates that camera is on.

*/
struct spareAreaf

unsigned int running : 1;

10

unsigned int cameraOn : 1;
u64 spare : 62;
//62 bits for future use

3

/*
Make sure that your compiler packs the structure below
(check that sizeof (struct CGIDataCartesian) equals 64)!

*/
struct CGIDataCartesian{
u32 syncVal; //always Ox7f7abaab to detect beginning of packet

u32 packetNumber;
u32 frameNumber;

float time; //[seconds]

float x,y,z; // [m]

float pan, tilt, roll; // [degrees]

float zoom, focus, iris; //scaled to [0..1] from one stop to the other
spareArea spare; //64 bits, most are free for future use.

u32 checkSum;

};

The structures above are also used within or testprograms (datagenerator
and datadisplay). Remind, however, that the implementation of bitfileds is
not guaranteed to be portable across machine boundaries. You may have
to change the bit positions within struct spareArea and you may have to
enforce that the struct CGIDataCartesian is packed.

Notes for developers of plugins to read the TECHNO-
DOLLY’s real time data

ASCII format

Each lines starts with an english letter (right now, just the two letters 'R’ and
'S” are used). After that, we have just digits, commas (’,”), periods (*.”) and
the newline character ("\n’). Even if we use different letters in the future
to display additinal information, we will always keep this basic structure.
That means that your reader routine should find the start of a new packet
by scanning for a character which is a letter [A-Z, a-z].

Furthermore, we may append additional comma separated fields in the fu-
ture. Consequently, you should not rely on the fact that we have exactly
10 numerical fields (frame number, X, Y, Z, pan, tilt, roll, zoom, focus, iris)
after the starting character. But, the first 10 fields will always contain the

values above in exactly that order.

11

Binary format

Always keep in mind that the serial interface is inherently a character oriented
interface. It does not support a concept like a packet. For a serial interface,
everything is just a stream of 8-bit quantities ®. To scan for the sync val,
you have to search for the occurence of the four characters Oxab, Oxba, Ox7a
and 0x7f (in that order!). Take a look at the code example in cgidata.c and
cgidata.h. There are complete and tested functions to synchronize to the
serial data stream and to test for checksum errors (written in ¢ language,
but should be easy to port to other languages as well).

The testprograms datagenerator and datadis-
play

We provide two testprograms to help in developing interfaces to other pro-
grams and to simplify the task of inspecting and converting the data export
of TECHNODOLLY cranes. The programs are open source and are cov-
ered by the GNU public license. Some basic procedures (contained in files
cgidata.h and cgidata.c are covered by an even more permissive license
to allow to be incorporated into closed-source software.)

Both programs run natively under the LINUX operating system. If you don’t
have LINUX comupter available, you can easily use a live distribution like
Knoppix (www.knoppix.org). This is a full-featured LINUX system which
boots from DVD without making any changes to your local harddisk.

Installing the testprograms

The package comes as a simple tar-archive (td_cgi.tgz). Create a directory
whereever you want, unpack the archive and run make. This could, for
example, be done by entering (finish every line by pressing enter):

cd

mkdir td

cd td

tar -xzvf td_cgi.tgz
make

This will create the two executables datagenerator and datadisplay. That’s
all.

6Seriel interfaces support 5, 6 and 7-bit quantities as well. The character size of the
TECHNODOLLY data export is always 8-bit.

12

General notes

The operate correctly, both programs need to know the name of the serial
port to use (device name). For computers with built-in serial interfaces (9-pin
D-SUB male connector) this is typically /dev/ttySO (which is the program’s
default if no --device or -d option is given). On some comupters it may
also be /dev/ttyS1 or /dev/ttyS2. On computers without built-in serial
ports, you can either use PCI or PCle serial cards (in that case, the name
will be /dev/ttySX, X = 0,1,2... as well) or you use a USB-to-serial adapter.
Most of these work well with linux, some may not. They appear typically at
/dev/ttyUSBO.

For testing, we recommend to build your own “loopback” adapter: Get a
9-pin female D-SUB connector and connect pin 2 (receive input) with pin 3
(transmit output). Plug it in to the serial port you want to use. Then simply
try out the different possible device names by starting datagenerator and
datadisplay with the same --device argument and see for which device
name it works.

Whether you can run the programs as a normal user or not depends on
the permissions of your respective device nodes. If you have read- and
write-access you can simply start the programs by typing ./datagenerator
or ./datagenerator from the installation directory. If only root has the
read and write access rights, you need to type sudo ./datagenerator or
sudo ./datagenerator and will be asked for root’s password.

datagenerator

This program simulates the data output of a TECHNODOLLY crane. It
continously writes data to serial port (or to a file) which has exactly the
same format as produced by TECHNODOLLY cranes. The program always
use cartesian coordinates. You can choose between binary data (the default)
and ASCII (by using the respective option). To invoke the program from the
instalation directory type

sudo ./datagenerator [OPTIONS]

To stop the program, just type CTRL-c. The following command line options
are recognized:

1. General options

-h Show a detailed help screen.
--help

-v Increase verbosity.
--verbose

continued on next page

13

continued from previous page

-t Generate ASCII output instead of binary.

-—ascii

-d DEV Write to character device or file DEV. Defaults to
--device DEV /dev /ttySO.

-f FLOAT Generate FLOAT packets per second. Defaults to 25.
--fps FLOAT

-e Generate a checksum error for each NUMth packet.
-—errors

2. Options affecting the camera moves

These options can be specified several times and affect only camera moves
which are specified afterwards. They are overridden by any new occurence of
the respective command line switch. See also examples.

-c FLOAT Set the periode for subsequent moves to FLOAT sec-
--cycle FLOAT onds. The default depends on the move type.
-a FLOAT Set the amplitude for subsequent moves to FLOAT. The

--amplitude FLOAT

default depends on the move type.

-o FLOAT Set the offset for subsequent moves to FLOAT. The de-
--offset FLOAT fault depends on the move type.
-p FLOAT Set the phase for subsequent moves to FLOAT degrees.

--phase FLOAT

The default is zero.

-s
—-no-smooth

Use trapezoidal oscillations instead of sinusoidal ones.

--run-start FLOAT

—--run-end FLOAT

These options do not affect the positional data output
itself. They just set the start and end time (in seconds)
for indicator bit “running pre-programmed move”. The
default is 0 and infinity, repsectively (i.e. bit is set all
the time).

——-cam-start FLOAT
——-cam-end FLOAT

These options do not affect the positional data output
itself. They just set the start and end time (in seconds)
for indicator bit “camera on”. The default is 0 and
infinity, repsectively (i.e. bit is set all the time).

3. Options selecting the camera moves

These options can be combined as long as they affect different axes. The
- -random and - -random-full options affect all axes and, consequently, can-
not be combined with any other camera move selection.

continued on next page

14

continued from previous page

--X Generate simple oscillating moves for the respective
-y axes. The respective axis will move according to

-=Zz

--pan value = offset 4+ amplitude x

--tilt . time phase

——roll sin (27r (cycle + 360)))

——zoom

--focus where time is the time since starting the program in
——iris seconds. If option --no-smooth is given, a trapezoidal

function is used instead of a sine. The defaults for
(cycle, amplitude, offset, phase) are:

--x, --y, --z: (5, 1, 0, 0)
--pan, --tilt, --roll: (5, 45, 0, 0)
--zoom, --focus, --iris: (5, 0.5, 0.5, 0)
These options can be arbitrarily combined to get a

camera move whith more then one axis moving (see
also examples).

--panTilt Pan and tilt draw a circle (smooth) or square (non-
smooth) in object plane. Mathematically:

pan = amplitude x
sin 2 time . phase
cycle 360
tilt = amplitude — amplitude x

time phase
cos | 27 +
cycle 360

Again, if option --no-smooth is given, a trape-
zoidal function is used instead of a sine resulting
in a square instead of a circle. The defaults for
(cycle, amplitude, phase) are (10, 45, 0).

continued on next page

15

continued from previous page

--xyPan

A circle (smooth) or square (non-smooth) in xy-plane,
camera watching the origin. Mathematically:

x = amplitude x

_ time phase
sin (27 +
cycle 360

y = amplitude x

time phase
cos | 27 +
cycle 360

360
pan = —o— atan2(—y, —x)

Again, if option --no-smooth is given, a trape-
zoidal function is used instead of a sine resulting
in a square instead of a circle. The defaults for
(cycle, amplitude, phase) are (10, 3, 0).

--loop

An aircraft inside loop. Mathematically:

x = amplitude x

_ time phase
sin | 27 +
cycle 360

x = —amplitude x

time phase
cos | 27 +
cycle 360

360
pan 5, atan (—y, —x)

The defaults for (cycle, amplitude, phase) are
(10, 3, 0).

——-random

Put binary random data in all fields except sync pattern,
packetNumber, frameNumber, time and check sum.

—--random-full

Put binary random data in all fields except sync pattern
and check sum.

Examples

To generate test data where pan oscillates between -90 and +90 degrees with
a periode of 8 seconds and to send it to serial port /dev/ttyS1 at a rate of
24 dataframes per second (all other axes will be constantly 0) use:

sudo ./datagenerator -d/dev/ttyS1 -a90 -c8 --pan --fps 24

The same as above but additionally, the “running pre-programmed move”

16

indicator bit is set between 8th and 16th second. Hence, the second cycle of
pan oscillation is marked by that indicator bit. The backslash can be used
to split the command to several lines.

sudo ./datagenerator -d/dev/ttyS1 -a%90 -c8 --pan --fps 24 \
--run-start 8 --run-end 16

Now the same as above but usind ASCII output. Between 8th and 16th
second, each line is started with the letter 'R’ indicating that we are “running
pre-programmed move”. QOutside this period, each line is started with the
letter 'S’.

sudo ./datagenerator -d/dev/ttyS1 -a90 -c8 --pan --fps 24 --ascii \
--run-start 8 --run-end 16

Remind that you can abbreviate each long option as long as it remains unam-
bigous. Consequently, the following command is equivalent to the previous
one:

sudo ./datagenerator -d/dev/ttyS1 -a90 -c8 --pan --fp 24 --as \
--run-s 8 --run-e 16

To make the pan oscillate between -30 and 430 degrees with a period of 4.4
seconds and to put the crane to constant position (z,y, z) = (1,2, 3) use:

sudo ./datagenerator -a30 -c4.4 --pan -a0 -ol --x -02 --y -03 --z

To generate binary arbitrary data with at a rate of 150 dataframes per sec-
ond and to generate a check sum error every 30 seconds (i.e. every 7500th
dataframe) use:

sudo ./datagenerator --random -f150 -e7500

datadisplay

This program displays the data export of TECHNODOLLY camera cranes
in a human-readable fashion. The output is written to standard output.
The program can be seen as a binary to various-test format converter which
also keeps track of communication errors. To invoke the program from the
installation directory type

sudo ./datadisplay [OPTIONS]

To stop the program, just type CTRL-c. The following command line options
are recognized:

17

-h Show a detailed help screen.

--help

-v Increase verbosity.

--verbose

-d DEV Read from character device or file DEV. Defaults to
--device DEV /dev/ttyS0.

-s Don’t display some statistical information for each

--no-statistics packet. Check sum errors, however, are always written
to standard error stream.

-p Don’t display packet data.

--no-packets

-u Don’t display characters when the receiver is out of sync.
--no-unsynced

-x Show floats as hex values. Good for debugging.

--hex

-c Ouput raw column based text. Each packet generates a
--columns line and each field corresponds to a column. Good for

interfacing to external programs. The order of columns
corresponds to the order of fields in CGIDataCartesian.

Examples

To receive data from an attached USB-to-serial converter and to print it to
screen use:

sudo ./datadisplay -d/dev/ttyUSBO

To receive data from the standard serial port and to write the output to a file
output.dat use (checks sum errors will still appear in the terminal window):

sudo ./datadisplay > output.dat

To convert a binary file file.bin to a simple space-separated ASCII file
file.asc use:

datadisplay -d file.bin -cs > file.asc

Here, we don’t use the sudo command because we simply operate on a regular
file instead of the serial interface.

18

